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Analysis of Arbitrarily Oriented Microstrip
Transmission Lines in Arbitrarily Shaped
Dielectric Media over a Finite Ground Plane
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ANTONIJE R. DJORDJEVIC, TAPAN K. SARKAR, SENIOR MEMBER, IEEE, AND YANG NAITHENG

Abstract — A numerical analysis is presented for a multiconductor trans-
mission line in multilayered lossy, dielectric regions where the ground plane
is of finite extent. The transmission lines are infinitely long and vary in
cross section from finite to infinitesimally thin. The Green’s function for
such a two-dimensional transmission line involves an arbitrary constant. If
the ground plane is infinite, the method of images could be used where this
constant cancels out. However, in the case of a finite ground plane, the
constant has to be evaluated. Here a numerical method is presented where
the constant could be eliminated rather than evaluated by imposing the
condition for the total charge to be zero. The transmission lines, dielectric
regions, and the ground plane can have arbitrary cross sections.

I. INTRODUCTION

HE OBJECTIVE OF this analysis is to determine
the capacitance and inductance matrix of a multi-
conductor transmission-line system. This work is an exten-
sion of the work described in [1]. The analysis 1s very
general in the sense that both the conductors and the
dielectric layers may be of arbitrary cross sections. The
conductors are embedded in a multilayered dielectric
material that is either above a single ground plane or
contained between two ground planes. The ground planes
may be of either infinite width or of finite width and may
be arbitrarily oriented. Each dielectric-to-dielectric inter-
face may also be of arbitrary shape and orientation while
being homogenous along the axes of the transmission lines.
In spite of a large volume of literature available, there is
no satisfactory analysis procedure to take care of such an
arbitrary system of conductor and dielectric layer orienta-
tion. The present work has been developed to overcome
this deficiency.

II. ANALYTICAL FORMULATION

The system under consideration is shown in Fig. 1(a),
where a number of infinitely long, arbitrarily oriented
striplines of arbitrary cross sections are embedded in several
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Fig. 1. (a) System configuration. (b) Equivalent system.

lossy homogenous dielectric layers. At first, the dielectrics
are treated as lossless and then the losses are introduced by
a complex dielectric permittivity. There are two important
features of this system that should be noted. In order to
have a more realistic and practical system, the dielectric
layers are considered to be arbitrarily oriented, not neces-
sarily parallel to one another or to the ground plane.
Further, the ground plane is considered to be of finite
extent. The numerical analysis is of course not limited to
the finite ground plane. However, analysis by the method
of images is carried out if the ground plane is infinite. The
objective of this work is to develop a numerical method for
analyzing arbitrarily oriented conductors embedded in di-
electric layers with a finite ground plane.

In order to evaluate the capacitance, conductance, and
inductance matrices of such a structure, the free charge on
each of the conducting surfaces is required. The sum of the
free charges and the polarization charges is related to the
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Fig. 2. Coordinate system of an arbitrarily oriented microstrip transmis-
sion line.

electric potentials and fields at the surface of any conduc-
tor and dielectric interface, respectively. With the help of
the boundary conditions at the dielectric—dielectric and
dielectric—conductor interfaces, the free charges can be
obtained from the total charges.

The solution procedure is based on the well-known
method of replacing all the conducting surfaces and dielec-
tric layers by equivalent layers of unknown charge densities
in free space as shown in Fig. 1(b). Under this condition,
the potentials and electric field for the two-dimensional
case are given by the familiar equations listed below:

V(p)= %Eoftoz(p’)ln dt (1)

lp — ¢l
E=-vV(p) (2)

where the integration is over the contour ¢ of the strips and
dielectric layers. ¥ is the potential and E is the electric
field. o,(p’) represents the total charge density which
would be due to the sum of the bound and free charges at
the conductor—dielectric boundaries and merely that due to
the bound charges at the dielectric—dielectric interfaces,
and K is an arbitrary constant to be determined.

With the coordinate systems described in Fig. 2, the
electrostatic potential at any point p, would be that due to
the charge distribution at p/. If an infinite ground plane is
present, the charge distribution due to its image is also
included. All the conducting strips and dielectric—dielectric
interfaces are divided into flat subsections and pulse func-
tions are defined of the form

1 .
1) ={y 3
The total charge density can now be expressed as follows:

or=Y¥ 3+/(0) @)

on the ith subsection
elsewhere )

where At is the contour of the ith subsection and g, is the
total charge on the ith conductor. The potential at each
subsection on the conductor can be expressed in terms of
the charges present everywhere. Hence, the potential at
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point (x,, y,) is
N
Or; K
V.=V(p,)= - In dr,,
! ( j) ,~§1 2me, '/At, 'Pj = o

j=1927'”’NS'

(5)

Here

o, is the total charge density on the ith interface,

p, is the contour of the ith subsection (as shown in Fig,
2),

N = Ng+ N, is the total number of subsections,

Ny is the number of subsections on conductor surfaces,

N, is the number of subsections on dielectric—dielectric
interfaces.

Referring to Fig. 2, the distance |p;,—p,| between the
source point and the field point can be expressed as
follows:

. 172

lo;= ed = {lo;= pul® + P} = 2(p;— 0)-Ip;} * (6)
where | is the unit vector in the direction of the vector
(piZ_ pll)’ where (xi2’ yt2) and (le’ yil) denote the end

coordinates of the ith subsection. With the help of a
standard integral, (5) reduces to the following form:
vy | Sanmk+ 7T (R, R,) |

s =] 2me 0 2me, /2 Tt

PR

where
R =[(p;=pa)-]Inlp, = p
R, = [(P} - Piz)'i] In|p, — oy,
Ry, =lp,— 04l

R= {10~ pal*~[(0,~ pu) 1]’} "

S=(p,—01)(p,—ps2). (8)

At; is the length of the ith subsection. In the above
equations, the coordinate locations of the ith and jth
interfaces or subsections are used so that angles of orienta-
tion do not have to be specified in the x—y plane. Hence

(pj—pi1)=&x(xj—xi1)+&y(yj_yi1) 9)
(pj_pi2)=&x(xj_'x;2)+&y(yj'_yt2) (10)
(Piz_Pn)=5x(xiz'xi1)+&y()’i2—yi1) (11)

1= M . (12)
|pl2 - pzll

Simplifying (8) by using (9)—(12), we obtain the neces-

sary equations for any arbitrary orientation of conductors,

dielectric layers, and ground plane. The total N= Ng+ N,

equations are used to solve for the unknowns o, i=

1,2,- - -, N. We utilize the continuity of the potential for

the first Ny equations on a conductor surface and equate

the continuity of the normal components of the fields in
the remainder of the N, equations.
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The boundary conditions at any dielectric—dielectric in-
terface yield the following:

Dy-h=Dyi
Eqh="LE.# (13)
€

where the outward normal 7 is defined in Fig. 3 and ¢,
and e, are the dielectric permittivities of the two regions.
Also, at the same boundary, the bound charge density o,
can be expressed in terms of the polarization vectors P,
and P;

o, = (P,— P,)-h (14)
Using (13), (14) reduces to

€, €
ob=( ’16 : ’2)e0E2-f1 (15)

where ¢, and ¢,, are the relative permittivities of the two
regions.

The electric field E, at any subsection located at a
dielectric interface due to charge distributions at all the
interfaces can be expressed as follows:

or, ((p,—0)

| 2m€0 Yy [ — el
tséj

”d+

E-h=E(p)n= ) 2€0
(16)
When the interfaces are flat, the integral reduces to

f(P, ;

-,
|pj - pl

(Ll)ln( )+L1RL RN-F1  (17)

where
1 1
—t ———, A=90
1 RL * (R12—RL)
L tan ™ E)—tan*l(—————Ru—RL) A>0
AL A yA ’
[ I Iy
(221 - Zn) (Zzz - Z12) (Zzs - 213)
(ZM,l— Zu) (ZNS,2 - Zu) (ZNS,S - le)
ZM+1,1 Ny+1,2 ZN:+1,3
| Zya Zya
~12
A=lp —pal*~ [(pj—pﬂ)'l]
R1=]p,~ pal
R12 = |p12 - plll
RN= (pj - pil).ﬁ
RL = (pj - pll)'l
L1=i-h

=1, — pal?+ 10— P> —2(p, = 01)-Tl012 = 0l-

€t €,0)
GTJ( = 2 _(itrl 1r2) Z
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From (15) and (16), one obtains the following equation:

op; f(proz)
Héj

-Adt,=0.
(18)

The moment method formulation reduces N, equations of
the form (7) and N, equations of the form (18) to a matrix
equation, denoted by

1
Zy Zin ([ o V,
Zy Zyn || 02 1o
: Sl Vy,
Zn Zyy L 0
| 0 |
that is
[Z][e]=[V]. (19)

In order to calculate the electrical parameters, the free-
charge densities at the various conductors should be ob-
tained. If the ground plane is infinite, the constant K in (7)
is eliminated because of the image term, and the free
charges may be obtained as described later in Section III.
However, for a finite ground plane or when the conductors
have different voltages, then this constant has to be
evaluated. Instead of evaluating this constant, a numerical
scheme has been devised to éliminate it.

The method essentially forces the total of the bound and
free charges on all conducting surfaces and dielectric layers
to be equal to zero. Numerically, it would amount to
subtracting the elements of the first row of the [ Z] matrix
from the corresponding elements of all the other rows from
i=2 to i= N, and then replacing the first row by the
lengths of the corresponding subsections. As for the [V]
vector, the first element is subtracted from all other ele-
ments including the first one. Therefore, (19) would be-
come

Iy ] o )
(Zyn— Z1y) K n=-n
- 02 V3 Vl
Zy ~v— N = : 20
( NN IN) oy, Vi~V (20)
ZNx+1.N O
: _GN i :
Zy.w | L 0

III. EVALUATION OF THE FREE-CHARGE DENSITY

The analysis here treats a system of both finite thickness
and zero thickness conductors. A commonly used proce-
dure for treating finite dimension conductors would be to
use the boundary conditions at its boundaries, which would
require the normal component of the electric flux density
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Fig. 3. Boundary conditions for electric fields.

vector to be equal to the free-charge density since the field
within the conductor is equal to zero. However, a problem
is encountered when the conductors are of unequal dimen-
sions. When they are of the same thickness, the mutual
capacitance C;, and C,;, etc., are exactly equal [1]. Butin a
system of transmission lines of unequal thicknesses, this is
no longer true and the difference becomes most pro-
nounced when some of the conductors are of finite thick-
ness and some are infinitely thin. This could be because the
numerical method of modeling using point matching may
not give a zero field inside the conductor, a condition used
in developing the boundary conditions at the surface of a
conductor. ‘

To overcome this difficulty, the present analysis consid-
ers all conducting surfaces as interfaces which for infinitely
thin conductors would have the two dielectric regions on
either side, and for finite-dimensioned conductors would
have a dielectric region on one side and the dielectric
permittivity e, corresponding to a conductor on the other.

With an arbitrary orientation of the various interfaces
and the outward normal as defined in Fig. 3, the free—charge
density o, at the jth subsection is as follows:

Y, = (Dz - 1)' n,

which is equivalent to
O = (‘r1 -
where o7, is the total charge density.

Using (16), (22) reduces to the following'

(€r1+€r ) (€r2 rl) p,"P a

=212l Yo

f’ 2 n* -1 Tf 1]p, "P|2
laéj

(21)

(22)

e,Z)eOEz-nj+ €407

ndt

7°

(23)
Equation (23) can be expressed conveniently in a matrix
form

21'1 Zl'z Zl’N 0, on
. -[on | @9
Z42 Zya Z§ n [LO
[Z'Hor]=1[o] (25)
where
Oy =1,2,-++, N, is the free-charge density at the con-

ductor—dielectric interfaces.

Once the free-charge density is obtained from (19), then
from (25) the total free charges ¢, on the ith subsection
can be evaluated from the following equation:

(26)

g7, = oAt

where At, is the length of the ith éubs,ection.

955

Fig. 4. Microstrip transmission-line system where the conducting strips
are of finite thickness. Solution is by the method of images.

IV. CAPACITANCE AND INDUCTANCE MATRIX

Any element of the electrostatic induction matrix C,,
may be defined as the ratio of the total charge on the ith
conductor to the potential on the jth conductor with all
other conductors at zero potential. Hence

_a|
7 PR )
LA k+j.

In order to obtain the inductance matrix, capacitance
matrix C, is calculated for the striplines oriented exactly as
before except that they exist in free space and are not
embedded in the dielectric layers. The inductance per unit
length is related to the capacitance per unit length by the
following relation [1}:

[£1-516] (28)

where ¢ is the speed of light in free space.

V. DieLECTRIC LOSSES AND THE CONDUCTANCE
MATRIX

The microstrip transmission-line system discussed above
is now considered with multilayered, arbitrarily oriented
lossy dielectrics associated with a complex dielectric per-
mittivity €. There is an additional transmission-line param-
eter, namely, the conductance matrix [G], which is the
analog of the capacitance matrix.

The coupled complex time-harmonic transmission-line
equations for the voltage and current are of the form given
below:

av

72—=~jw[L]f (29)
(Gl el P =171 (30)

where the complex permittivity €, which gives rise to the
admittance matrix [Y], is expressed as

1
A

é=¢’— je” with the loss tangent tan § = —
€
A time variation of the e/“’ has been assumed. Equation
(30) can be written as follows:
. el . o
a__ jw{[C]+[J—.wl}V= - jo[ClV

dz (1)
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TABLEI
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM
SHOWN IN F16G. 4

Present Analysis Weeks [2] Rao and Sarkar [3]
Cyy = C22 92.36 92.24 91.89
pF/m
€12 = Cz1 -8.494 -B8.504 -7.019
pF/m
L)1 = Lz 0.1982 0.1982 0.1855
uR/m
Lis = Ly 0.03014 0.02980 0.02361
uH/m
x
VI. RESULTS
€0 M ; To illustrate the numerical analysis developed here, the
= e T — commonly used microstrip transmission lines with two
cpo2 1 conductors mounted above a ground plane have been
Yy, y» considered. The microstrip transmission-line system and

Fig. 5. Microstrip transmission-line system where one conductor is of
finite thickness and the other is of zero thickness. Solution is by the
method of images.

where the complex matrix

AT 6]
[Cl=[C]+ o

(32)

Using the same solution procedure as described in the
previous sections but with complex dielectric permittivities,
one could obtain the complex matrix [C]. Using (32), this
matrix can be related to the capacitance and conductance
matrices by the capacitance matrix

[C]1=Re[(]
and the conductance matrix
[G]=—wIm [C’]

(33)

(34)

w being the angular frequency.

All the merits of this analysis already discussed still hold
for this complex case. The system is very general with
arbitrary oriented ¢conductors and dielectric layers of arbi-
trary cross section. Ground planes could be present and
they could be finite or infinite in size. The system of
conductors and dielectrics could also be sandwiched be-
tween two finite ground planes. Further, a condition has
been imposed to make the total charge, the sum of the free
charges and polarization charges, equal to zero. The con-
ductor—dielectric interfaces are treated in the same way as
dielectric—dielectric interfaces with €, used for the permit-
tivity of the conductor. This is to make sure that the total
field within the conductor is equal to zero, a condition not
necessarily true when using point matching for the solution
procedure. It is seen here that this last condition and the
one for the total charge to be zero results in a very nearly
symmetric capacitance and conductance matrices when the
conductors are of unequal cross section.

results for the capacitance and inductance matrices are
presented for each of the following examples. As a first
example, consider the configuration given in Fig. 4. The
results for that configuration (Table I) are compared with
those obtained by Weeks [2] for the two-dimensional case
by Rao and Sarkar [3] for the three-dimensional case. The
agreement is satisfactory.

For the same configuration, the various features of this
analysis have been demonstrated. To illustrate its use for
conductors of various thicknesses, one of the conductors’
was reduced to zero thickness (Fig. 5). The results in Table
II show a difference of less that 0.1 percent in the values of
C,, and C,;. Table HI for the system in Fig. 6 shows the
case when both conductors have been reduced to zero
thickness. Table IV illustrates the effects of the dielectric
edges for the system in Fig. 7. Comparison of this table
with Table I shows that there is a relatively small change in
the capacitance as the width cf the dielectric is reduced.
Next, the ground plane has been treated as a finite conduc-
tor with zero voltage, as shown in Fig. 8. The results of
Table V compare well with those of a similar configuration
(Table IV) where the ground plane is infinite. Table VI,
corresponding to Fig. 9, illustrates the same kind of analy-
sis as Table V, except that one of the conductors is of zero
thickness.

The total number of subsections in each example is
about 150. For example, in Table V for Fig. 8, where the
ground plane is finite and the dielectric edges have been
taken into account, the subsections used were as follows:
there were 12 subsections on the ground plane, 8 subsec-
tions each along the Y-direction of each conductor, 2
subsections each along the X-direction of each conductor,
8 subsections each along the vertical dielectric edges and
along the horizontal dielectric—air interface, 10 subsections
from the edge of the dielectric to the conductor, 8 subsec-
tions between the conductors, and 10 subsections again
from the edge of the conductor to the dielectric.
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Fig. 6. Microstrip transmission-line system where the conducting strips
are of zero thickness. Solution is by the method of images.

"y

Fig. 7. Microstrip transmission-line system with W varying. The effect
of the dielectric edges has been illustrated for two cases when the edges
are included and when they are excluded.

TABLE II
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM
SHOWN IN F1G. 5

Capacitance Matrix Inductance Matrix

€31 = 91.24 (pF/m) L1y = 0.2006  (uH/m)
Czy = 83.16 (pF/m) Lyp = 0.2317 (uB/m)
€12 = -5.602 (pF/m) Lyp = 0.023704 (uH/m)

€1 = -5.647 (pF/m) 0.023703 (uH/m)

L2 =

TABLE III
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM
SHOWN IN FIG. 6

Capacitance Matrix Inductance Matrix

Cy1 = 82.514 (pF/m) L1 = 0.2335  (uH/m)
Cyp = B2.594 (pF/m) Lyp = 0.2335 (uH/m)
€12 = -3.827 (pF/m) 1y, = 0.01885 (uH/m)
g1 = -3.827 (pF/m) Lgy = 0.01885 (uH/m)

TABLE IV
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM
SHOWN IN F1G. 7

€1y = C22 (pF/m) C12 = C21 (pF/w)
¥ Without With Without With
6.0 92.36 92.05 -8.494 -8.473
4.0 92.44 92.14 ~8.506 -B.485
2.0 92.40 92.10 -8.539 -8.517
0.5 91.44 90.50 ~8.595 -8.565
0.0 89.68 87.97 -8.603 -8.569

/

Fig. 8. Microstrip transmission-line system of finite thickness conduct-
ing strips. The edges of the diclectric have been taken into account. The
ground plane has been treated as a conducting strip.
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Fig. 9. Microstrip transmission-line system where one conductor is of
finite thickness and the other is of zero thickness. The ground plane is
treated as a finite conductor. The edges of the dielectric have been
taken into account. ‘

TABLEV
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM
SHOWN IN F16. 8§

Capacitance Matrix Inductance Matrix

€11 = C22 = 91.642 (pF/m) L1y = Lgz = 0.20035 (uH/m)

€1z = Co1 = -8.6972 (pF/m) Liz = L2 = 0.031826 (uH/m)

TABLE VI
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM
SHOWN IN FI1G. 9

Capacitance Matrix Inductance Matrix

C11 = 90.43  (pF/m) 113 = 0.2028  (uH/m)
€y, = 82.703  (pF/m) Lyz = 0.2336  (uR/m)
€1y = -5.73295 (pF/m) L1z = 0.025023 (uH/m)
C21 = -5.79379 (pF/m) Ly = 0.025020 (uH/m)




958

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

TABLE VII
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE

Inductance Matrix

Capacitance Matrix

€13 = 114.9  (pF/m) L1 = 0.2368 (vH/m)
Czp = 106.7  (pF/m) Lyz = 0.3745 (uH/m)
€12 = =7.097 (pF/m) L1y = 0.01986 (uH/m)
€1 = -7.21 (pF/m) Ly} = 0.01986 (yH/m)
Fig. 10. Microstrip transmission-line system with two ground planes of
finite dimension and two conductors of which one is infinitely thin. The
dielectric layers are oriented as shown.
TABLE VIII
RESULTS FOR THE SYSTEM SHOWN IN F16. 11
Present Analysis br}ln‘tou [4) Analytical
C (pF/m) 80.093 80.08 80.37
6 (8/m) 0.6032 x 1074 0.6038 x 10-% 0.606 x 10°4
L (uH/m) 0.5530 0.555 0.5537

TABLE IX
RESULTS FOR THE MICROSTRIP TRANSMISSION-LINE SYSTEM

SHOWN IN Fi16. 12

Capacitance Inductance Conductsnce
Matriz (pF/m) Matriz (yE/m) Matrix (uS/m)
(3 Present Barrington [4) Present Barrington [4] Present Barrington [4]
Analysis Apalysis Avalysis
1 1 301.21 ) 308.8 0.26786 0.2714 0.6294 0.6420
1 2 «36.82 ~36.06 0.04441 0.0449 -0.17182 «0 1701
113 ~2.636 -2.848 0.01273 0.01295 -0.01257 -0.01327
1] 4 -22.28 ~24.59 0.03317 0.03442 -0.05818 -0.0607
2|1 ~36.98 =36.06 0.4456 0.04488 ~0.1736 -0.1701
272 343.4) 333.1 0.2520 0.2594 1.5119 1.481
2 3 «27.17 ~30.45 0.0333% 0.03447 ~0.1384 ~0.1498
2| 4 -17.23 ~16.41 0.03692 0.03742 ~0.09854 ~-0.09688
3 1 ~2.712 -2.848 0.01284 0.01295 -0.01242 -0.01327
3 2 -27.08 -30.45 0.03333 0.03447 -0.13511 -0.1498
3 3 358.99 380.6 0.25592 0.2570 1.529¢6 1.608
3[4 -32.26 -31.78 0.052788 0.0525 -0.1776 ~0.1777
4 1 -24.37 -24.59 0.033983 0.03447 ~0.05944 ~0.0607
4 2 -16.73 ~16.41 0.03699 0.03742 -0.09941 -0.09688
4 3 ~31.32 -31.78 0.052687 0.0525 -0.1760 -0.1777
4 4 230.5 232.8 0.32655 0.3326 0 6341 0 6383

As a final example, we consider a finite-thickness con-
ductor and a zero-thickness arbitrarily oriented conducting
strip sandwiched between two finite-length ground planes
containing various dielectric layers as illustrated in Fig. 10.
The capacitance and the inductance matrices for this con-
figuration are given in Table VII. In this case, the dis-
crepancy between C,, and C,, is less that 2 percent.

The examples given above illustrate the microstrip trans-
mission line with arbitrarily oriented dielectric layers and a
finite ground plane.

When the dielectrics are lossy, the conductance matrix
can be evaluated for a similar microstrip transmission-line

system described above. Tables VIII and IX, correspond-
ing to Figs. 11 and 12, respectively, are two examples
which have been compared to the results of Harrington ez
al. [4]. It should be noted that the difference in the ele-
ments C, . and C, , shown in Table IX ranges between
0.3 to about 8 percent. These values have not been aver-

aged as in [4].
VIIL.

A numerical procedure has been presented for the com-
putation of inductance, capacitance, and conductance
matrices for arbitrarily oriented multiconductor transmis-

CONCLUSION
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Fig. 11. A circular conductor above a perfectly conducting, infinite
ground plane. Solution is by the method of images.
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Fig. 12. Microstrip transmission-line system of four conducting lines
embedded in three lossy dielectric layers and placed between two
ground planes.
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sion lines of arbitrary cross sections in multiple dielectric
media. The conductors may be of finite cross section or
may be strips of zero thickness. The dielectric layers can be
of arbitrary orientation. The conductors embedded in the
multilayered dielectrics can be either on top of a finite or
infinitely wide ground plane or sandwiched between two
arb1trar11y oriented ground planes.
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